Existence and Nonexistence Results for Second-order Neumann Boundary Value Problem
نویسندگان
چکیده
In this paper some existence and nonexistence results for positive solutions are obtained for second-order boundary value problem −u + Mu = f(t, u), t ∈ (0, 1) with Neumann boundary conditions u(0) = u(1) = 0, where M > 0, f ∈ C([0, 1] × R, R). By making use of fixed point index theory in cones, some new results are obtained. Full text
منابع مشابه
Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem
This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.
متن کاملExistence and nonexistence of positive solution for sixth-order boundary value problems
In this paper, we formulate the sixth-order boundary value problem as Fredholm integral equation by finding Green's function and obtain the sufficient conditions for existence and multiplicity of positive solution for this problem. Also nonexistence results are obtained. An example is given to illustrate the results of paper.
متن کاملNonexistence and existence results for a fourth-order p-Laplacian discrete Neumann boundary value problem∗
In this paper, a fourth-order nonlinear p-Laplacian difference equation is considered. Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. The existing results are generalized and significantly complemented.
متن کاملNUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملTENSION TRIGONOMETRIC SPLINES INTERPOLATION METHOD FOR SOLVING A LINEAR BOUNDARY VALUE PROBLEM
By using the trigonometric uniform splines of order 3 with a real tension factor, a numericalmethod is developed for solving a linear second order boundary value problems (2VBP) withDirichlet, Neumann and Cauchy types boundary conditions. The moment at the knots isapproximated by central finite-difference method. The order of convergence of the methodand the theory is illustrated by solving tes...
متن کامل